Y TU Wien Bibliothek for economic help by way of its Open Access
Y TU Wien Bibliothek for economic support by means of its Open Access Funding Plan. Conflicts of Interest: The authors declare no conflict of interest.Entropy 2021, 23,21 ofAppendix A. Complexity Plots for All Datasets0.96 0.94 0.92 Hurst exponent 0.90 0.88 0.86 0.84 0.82 0.2 four six 8 ten 12 quantity of interpolation points 140.95 0.90 Fisher’s information 0.85 0.80 0.75 0.70 0.65 0.60 Fisher’s info, not interpolated Fisher’s information and facts, fractal interpolated Fisher’s information and facts, linear interpolatedHurst exponent, not interpolated Hurst exponent, fractal interpolated Hurst exponent, linear interpolated6 eight 10 12 quantity of interpolation points0.6 0.five SVD entropy 0.four 0.3 0.two 0.1 two four 6 eight ten 12 quantity of interpolation points 14 16 SVD entropy, not interpolated SVD entropy, fractal interpolated SVD entropy, linear interpolatedFigure A1. Plots for Fisher’s information, the Hurst exponent and SVD entropy depending on the quantity of interpolation points for the non-interpolated, the fractal-interpolated and also the linear-interpolated data, monthly imply temperature in Nottingham castle dataset.two.two.0 Lyapunov exponent10 Shannon’s entropy1.1.Lyapunov exponent, not interpolated Lyapunov exponent, fractal interpolated Lyapunov exponent, linear interpolatedShannon’s entropy, not interpolated Shannon’s entropy, fractal interpolated Shannon’s entropy, linear Polmacoxib manufacturer interpolated0.0.0 2 4 six eight ten 12 number of interpolation points 146 eight ten 12 number of interpolation pointsFigure A2. Plots for the Biggest Lyapunov exponent and Shannon’s entropy based on the quantity of interpolation points for the non-interpolated, the fractal-interpolated and the linear-interpolated data, monthly vehicle sales in Quebec dataset.Entropy 2021, 23,22 of1.0.95 0.90 Fisher’s information and facts 0.85 0.80 0.75 0.70 0.65 Fisher’s facts, not interpolated Fisher’s information and facts, fractal interpolated Fisher’s data, linear interpolated0.9 Hurst exponent 0.eight 0.7 0.six 0.2 4 6 8 ten 12 quantity of interpolation points 14Hurst exponent, not interpolated Hurst exponent, fractal interpolated Hurst exponent, linear interpolated6 eight 10 12 number of interpolation points0.5 0.4 SVD entropy 0.three 0.2 0.1 2 four six 8 ten 12 quantity of interpolation points 14 16 SVD entropy, not interpolated SVD entropy, fractal interpolated SVD entropy, linear interpolatedFigure A3. Plots for Fisher’s info, the Hurst exponent and SVD entropy based around the number of interpolation points for the non-interpolated, the fractal-interpolated plus the linear-interpolated data, month-to-month imply temperature in Nottingham castle dataset.2.two.0 Lyapunov exponent11 Shannon’s entropy1.1.Lyapunov exponent, not interpolated Lyapunov exponent, fractal interpolated Lyapunov exponent, linear interpolatedShannon’s entropy, not interpolated Shannon’s entropy, fractal interpolated Shannon’s entropy, linear interpolated0.0.0 2 4 6 8 ten 12 number of interpolation points 147 two four 6 eight 10 12 number of interpolation points 14Figure A4. Plots for the Biggest Lyapunov exponent and Shannon’s entropy depending around the number of interpolation points for the non-interpolated, the fractal-interpolated and the linear-interpolated information, month-to-month mean temperature in Nottingham castle dataset.Entropy 2021, 23,23 of0.9 0.eight Fisher’s facts 0.7 0.six 0.five 0.4 Fisher’s Mouse Data Sheet details, not interpolated Fisher’s details, fractal interpolated Fisher’s details, linear interpolated0.90 0.85 0.80 0.75 0.two four 6 8 ten 12 number of interpolation points 14Hurst exponentHurst exp.